

Introduction to China Space **Station Telescope** (CSST)

Prof. ZHANG Xuejun Vice President of CIOMP October 16, 2017

CIOMP Brief Introduction

Overview

Up to 2017

-2087 employees

-229 research professors and 587 associate research professors Funding in 2015-16 FY: 262 million US \$

Space

- The main research areas:
- Luminescence
- -Applied Optics
- -Optical Engineering
- -Precision Mechanics

The new working area started operation in 2003

- -Construction area = $260,000m^2$
- -Research & Development sector
- -Production sector
- -Education sector

As a major space optical payload supplier, CIOMP can offer component and system level solutions.

Stripe filters for CCD

CMOS sensor-GMAX3005

Grating 400mm×500mr

CSST is the biggest space-based optical payload in China, surveying at the same orbit with China Space Station . Survey camera uses the telescope to achieve astronomical surveying.

surveying in orbit

Task and Features

Task of CSST surveying: research on dark matter, dark energy, cosmogony. Study the weak lensing effect.

Features:

- ✓ Aperture Φ2m
- ✓ broadband spectrum : 255nm~1700nm
- ✓ FOV of survey:1.1 deg²
- \checkmark 2.5 billion pixels
- ✓ Angular resolution : $\leq 0.15''$ (λ =0.6328µm , 1.1deg²)
- ✓ Survey image stabilization precision $\leq 0.05''$ (3σ , @300s)
- ✓ PSF Ellipticity max<15%,avg<5%

Comparison of Specifications

	HST ^[1]	Euclid	WFIRST ^[2]	CSST
Orbit	LEO(600km)	L2	L2	LEO(400km)
Aperture	2.4m	1.2m	2.4m	2m(no CO)
FOV	0.17deg ²	0.55deg ²	0.28deg ²	1.1deg ²
Angular Resoluti on	0.1″	>0.2"	>0.2"	0.15″
Optical System	R-C	On-axial TMA	Re-designed On-axis TMA	Off –axis TMA

[1]: 《The Hubble Space Telescope Optical Systems Failure Report》

[2]:https://wfirst.ipac.caltech.edu/sims/Param_db.html

New Trends in Astronomy Community

Large FOV & High Resolution

Area of FOV 350 times larger than HST

CSST Features

- ■The main optical system--Off-axis TMA
- Fast steering mirror-- image stabilization
- Secondary mirror --Active optical adjustment
- Fold mirror-focusing\image stabilization
- Scientific instruments orbital upgrade or maintenance

CSST Components

Outer Barrel Assembly (OBA)

Optical Telescope Assembly(OTA)

Survey Camera(SC)

Outer Barrel Assembly (OBA)

Optical System Selection

1E-1

1E-2

1E-3

1E-4

Off-axis system(COOK TMA)

- No center obscuration, which makes a better spot diagram energy concentration
- No spider, which has lower scattering effect.

Traditional off-axis design with general aspheres

Tilted off-axis design with freeform surfaces

Tilted axis helps to enlarge FOV in 2D Coma Off-Axis TMA Ast. Indeg² average 0.046λ (λ=632.8nm) 1.1deg² average 0.068λ (λ=632.8nm) 1.1deg² average 0.068λ (λ=632.8nm) 1.1deg² average 0.068λ (λ=632.8nm)

Introducing freeform as defined below, helps to improved residual WFE

Final Results for 1.1deg² FOV (Area of FOV 350 times larger than HST)

PV of Ellipticity 0.07 Average better than 0.035

Sensitivity of the tolerance of ellipticity

The off-axis TMA system based on optical freeform surface.

- aperture : Φ2m
- Field of view : 1.1deg²
- Large FOV、High-resolution、 no obscuration
- The central field is used to highquality survey; the edge field is used for spectrograph, wavefront sensor, FGS.

- Rectangle field, beneficial to detector layout, high FOV availability ratio
- Real exit pupil——set fold mirror for focusing \image stabilization.
- With relay image plane, beneficial to stray light depression

- 2m telescope Diffraction limit angular resolution 0.078", Wavefront Error less than 0.075λ, the Static angular resolution less than 0.13".
- Error : Optical design residuals Optical component manufacturing error Alignment error orbiting error FSM steering error.

Stray light suppression design

Goals : the stray which were caused by sunlight, moonlight and the atmosphere radiation less than a third of the average level of zodiacal light background

Stray light source	Suppression method	result
Sunlight	Aperture door :stop the sunlight from 65 $^\circ$	Total occlusion
moonlight	Light shield: eliminating the first scattering- attenuation and absorption	PST:1.32e-9 (40°)
Earth and Atmosphere radiation	The vane inside the aperture door eliminated the first scattering- light shield stop the second scattering-attenuation and absorption inside the hood	less than 1/36 of zodiacal light background

Simulation of miscellaneous light suppress

Active Adjustment

Principle

- SM /fold mirror alignment ,
- correct the misalignment caused by gravity release and on orbit environmental changes
- Satisfy the wavefront error and ellipticity requirements

Design

- Wavefront sensor ---CMOS
- WFE determination ---the linear expansion PD algorithm
- Calculate alignment value of SM/ fold mirror --sensitivity matrix and the vector aberration theory
- SM and the fold mirror are aligned by steward platform.

Wavefront sensor

SiC vs. ULE

CIOMP's 2.2m SiC PM, 340kg (Areal Density:89kg/m²)

Weight reduced by a factor of 2!

Hubble's 2.4m ULE PM, 817kg (Areal Density:180kg/m²)

SiC vs. Zerodur

Cast into near net-shape, without complex lightweight milling process.

Low risk and cost effective!

SOFIA's 2.7m Zerodur PM, 850kg (Areal Density:148kg/m²)

CIOMP's heritage of SiC mirrors

Ti. Filled Plot 0.99995 0.00000

Tilt F

1.5m SiC aspheric mirror final result: 10nm rms, 1.2 µRad Slope rms

Measure Attr Analyze Attr

PVR

2m SiC aspherical mirror:12nm rms, slopeRMS:1.5µRad

Z990 Synthetic Fringe Map

7

X

The ϕ 4.03m CIOMP-SiC mirror blank (World largest! 2016)

Precision Image Stabilization(PIS)

- ACS residual (4.5"(3o)@300s) ;
- Precision image stabilization system suppress the disturbance below 8Hz, which is result from ACS and low frequency Jitter. After the suppression the vibration of the optical axis is within 0.05"(3σ);
- Jitter attenuation system suppress the disturbance above 8Hz. After the suppression the vibration of the optical axis is within 0.01"(3σ);
- The image stabilization accuracy 0.05 "(3σ) is divided into translational axis control accuracy 0.04 "(3σ) and image rotation control accuracy 0.03 "(3σ).

Precision Image Stabilization

system scheme : Large aperture fast steering mirror mechanism + image rotating mechanism +precision image stabilization control + FGS

Large aperture fast steering mirror mechanism

Translational direction accuracy is 0.036", image rotation accuracy is 0.028 ", synthesis accuracy is 0.046", less than 0.05" (3σ) requirement.

Precision Image Stabilization

Astronomical observation requires high image stabilization accuracy(0.05" , 3σ , 300 second)

Requ	Technical approach		
High procision attitude		High speed large area array detector	
measurement of FGS	better than 0.01"	centroid subdivision algorithm	
Large aperture fast steering mirror disturbance	Dynamic range : more than 20Hz	Piezoelectric actuator	
suppression frequency	(40011111×37011111)	PID feed forward control	
	performance verification of FGS	high-precision experiment and simulation verification platform	
technique	fast steering mirror control verification		
	system level experiment		

Jitter (Micro-vibration) Attenuation

- Vibration isolation of disturbance source : suppression of cryocooler maximum disturbance is above 90% , suppression of CMG maximum disturbance is 86.5%.
- **Vibration Attenuation with Damping :** Improve the damping of structure.

Thermal Control Design

- MLI ---- reduce the direct impact of external heat flow, improve the temperature stability
- Accurate insulation and precision active thermal
- Heat scattered out by 20 m² radiators.
- flat loop heat pipe(FLHP) for SI cooling

Truss: 20 \pm 1 °C

PM: 20 ±0.1 ℃

Orbital Maintenance

- CSST is expected to serve for more than 10 years. Orbital maintenance can be carried out for instruments update or malfunction while CSST dock to space station.
- Orbital replaceable units(ORU): scientific instruments, electronic units, thermal coat, movement mechanism.

- Focal plane composed by 30 9k*9k sensors
- High integration low noise and power by ASIC
- Grating fixed before the focal plane for slitless spectrometric
- Cryocooler--the detector working under low temperature
- Fine rotation compensator--Piezoelectric ceramic driving flexible structure
- Main structure and the shutter are separately designed and orbit maintain

Survey Camera

- To achieve the goal of imaging depth, the reading noise of the focal plane should be below 5e-/pix@150kHz,and hence the noise of sensors and reading electronics should be restricted.
- The reading noise of CCD sensors is approximately less than 3e-/pix(proved by the manufacturer),so the noise of the reading electronics should be below 4e-/pix,or below 24µV.
- High circuit density, electromagnetic environment complex, circuites need low noise design and control.

Thank You For Your Attention !

